
MATHEMATICS OF COMPUTATION
VOLUME 61, NUMBER 204
OCTOBER 1993, PAGES 833-847

FAST FOURIER TRANSFORMS FOR SYMMETRIC GROUPS:
THEORY AND IMPLEMENTATION

MICHAEL CLAUSEN AND ULRICH BAUM

ABSTRACT. Recently, it has been proved that a Fourier transform for the sym-
metric group S, based on Young's seminormal form can be evaluated in less
than 0.5(n3 + n2)n! arithmetic operations. We look at this algorithm in more
detail and show that it allows an efficient software implementation using appro-
priate data structures. We also describe a similarly efficient algorithm for the
inverse Fourier transform. We compare the time and memory requirements of
our program to those of other existing implementations.

1. INTRODUCTION

In 1965, Cooley and Tukey [6] published a fast algorithm for the evaluation of
Discrete Fourier Transforms. Since then, the DFT and its variants have become
extremely important tools in many areas such as digital signal processing. In
terms of representation theory, the DFT describes an algebra isomorphism from
the complex group algebra CC, of the cyclic group Cn (the signal domain) onto
the algebra of n-square diagonal matrices over C (the spectral domain).

Wedderburn's theorem allows us to generalize the DFT to arbitrary finite
groups: Let K be a splitting field of the finite group G with char K I I GI. Then
the group algebra KG is isomorphic to an algebra of block diagonal matrices:
KG - = Kd' xd, where the blocks correspond to the equivalence classes of
irreducible representations of KG and h is the number of conjugacy classes
of G. Every algebra isomorphism

h h

D= Di :KG. ,Kdixdi
i=1 i=1

is called a Fourier transform for KG. The constituents D1, ... , Dh of D form
a transversal of irreducible representations of KG. With respect to natural
bases in KG and e3iKdixd,, every Fourier transform of KG can (and will)
be viewed as a matrix D E KIGIXIGI and every a E KG as a column vector in
KIGI .

This gives rise to three closely related computational problems: Efficient con-
struction of a suitably encoded Fourier transform matrix for a given group, fast
evaluation of such a transform, which amounts to computing a matrix-vector

Received by the editor April 16, 1992.
1991 Mathematics Subject Classification. Primary 20C30, 20C40; Secondary 68Q40, 68R05.

? 1993 American Mathematical Society
0025-5718/93 $1.00 + $.25 per page

833

834 MICHAEL CLAUSEN AND ULRICH BAUM

product, and finally fast interpolation, which means fast evaluation of the in-
verse Fourier transform. Usually, the construction is a precomputation step
that has to be done only once for multiple evaluations.

The simplest way to do this would be to precompute and store the whole IGI-
square Fourier matrix and then to evaluate it using the standard matrix-vector
multiplication formula. But this procedure is very inefficient: The precompu-
tation step requires computing the representing matrices Di(g) for all i and
all g E G. Obviously, this takes a great deal of time, and one has to store
IG12 numbers. The evaluation would take of the order IG12 arithmetic opera-
tions. Both time and memory restrictions prohibit using this approach for large
groups. To obtain practically feasible algorithms, one takes advantage of the
group structure and the properties of the chosen transversal of irreducible rep-
resentations. Nonabelian groups have irreducible representations of degree > 1
which have different matrix forms depending on the choice of bases in the cor-
responding simple KG-modules. Hence, there are essentially different Fourier
transforms which can also widely differ in their construction and evaluation
complexities.

We are going to define a computational model for the evaluation of Fourier
transforms and their inverses: The K-linear complexity of a matrix A E KnXn
is the minimal number of K-linear operations (i.e., additions, subtractions,
and scalar multiplications) sufficient to evaluate A at a generic input vector
x. As nonabelian groups have many Fourier transforms, we define the K-
linear complexity LK(G) of a finite group G as the minimum of the K-linear
complexities of all Fourier transforms for KG.

Obviously, IGI - 1 < LK(G) < 21GI2 . The classical FFT algorithms [6, 3, 17]
show that LK(G) = O(GI log GI) for abelian groups G. This has recently been
extended to a much larger class containing the supersolvable groups [1] using
monomial and symmetry-adapted representations which are also surprisingly
simple to generate. In a restricted computational model, one can prove that
these algorithms are asymptotically optimal [2].

This paper is concerned with fast Fourier transforms for symmetric groups
and their implementation. Some interesting applications of these transforms in
the statistical analysis of ranked data have been investigated by Diaconis [7, 8].
In the 1 930s, Alfred Young found simple explicit formulae for two transversals
of irreducibles of Sn, the so-called seminormal and orthogonal forms. In-
dependently, Diaconis and Rockmore [9] and Clausen [5] have used Young's
seminormal form as a basis of a more efficient algorithm for the evaluation of
the corresponding Fourier transform of Sn . Although their methods are quite
similar, the resulting upper bounds differ substantially: Diaconis and Rockmore
show that

LK(Sn) = 0((n!)r2 n),

provided that (d x d)-matrices can be multiplied with O(da) arithmetic oper-
ations. However, all known matrix multiplication algorithms with a < 3 are
of no practical use for our problem: They use a large amount of memory and
do not run faster than the naive algorithm for the d in question. Hence, with
respect to implementations, one should assume a = 3. On the other hand,

FAST FOURIER TRANSFORMS FOR SYMMETRIC GROUPS 835

Clausen has proved the explicit upper bound

(1.1) LK(Sn) < 2(n3 + n2)n!,

which does not depend on advanced matrix multiplication methods.
Recently, Linton, Michler, and Olsson [13] suggested a completely different

approach for computing Fourier transforms for symmetric groups. It is based
on the Inglis-Richardson-Saxl model [10] consisting of a series (7rt)O<t<Ln/2j
of induced monomial representations lrt of degrees n!/(2tt!(n - 2t)!). The
crucial fact is that 7r0 ... 7rLn/2j contains every irreducible representation
of Sn with multiplicity one, i.e., for suitable block-diagonalizing matrices Xt
the mapping tXt * . tr(.) * X7-1 is a Fourier transform for Sn . This leads to
an algorithm with an arithmetic complexity of

LK(Sn) = 0((n!)3/2en-12)

Diaconis and Rockmore, and Linton, Michler, and Olsson sketch implemen-
tations of their algorithms and present some information on their running times.
Both implementations seem to be rather time- and space-consuming (see the ta-
bles in ?5). In particular, the Fourier transform for SI0 does not appear feasible
using either of these algorithms.

In this paper, we look at the algorithm described in [5] and the necessary
precomputations in more detail and show how to turn it into an efficient pro-
gram using appropriate data structures. We also describe a similarly efficient
implementation of the inverse Fourier transform. Finally, we compare our pro-
gram to the other two implementations. It turns out that computing the Fourier
transform for SIO is no problem with our program, even on a small workstation.

2. FAST PRECOMPUTATION

A uniform approach to designing efficient DFT algorithms is based on adapt-
ing the irreducible representations to a chain of subgroups: Suppose we want to
evaluate a Fourier transform D of a finite group G at a generic input vec-
tor a = EgEGagg E KG. Any algorithm based on the formula D(a) =

EgEGagD(g) has to specify the order of summation. This can be done in
a natural way using subgroups: If U is a subgroup of G, one rewrites the
input a = EgEGagg E KG according to the partition G = UjhjU of G
into left cosets of U: a = Zjhjaj with aj := ZuEUahjUu E KU. Then
D(a) = >j D(hj)D(aj) reduces the original problem to several evaluations of
D at elements of KU. Now if the restriction of D to KU is itself (up to
multiplicities) equal to a Fourier transform of the subgroup U, we can apply
this method recursively without performing a base change. This idea can be
formalized as follows.

Definition 2.1. Let 9 = (G = Gn > ... > Go = {1}) be a tower of subgroups
of the finite group G and K a splitting field of all Gi with char K { I GI .I A

IUnless otherwise specified, we will assume in this section that G, Y, and K are defined as
here.

836 MICHAEL CLAUSEN AND ULRICH BAUM

matrix representation D of KG is called Sf-adapted if for all j, 0 < j < n,
the following conditions hold:

(a) The restriction D 1 KGj of D to KGj is equal to a direct sum of
irreducible matrix representations of KGj.

(b) Equivalent irreducible constituents of D l KGj are equal.

As copying is free in our computational model, condition (b) allows us to use
intermediate results several times, saving arithmetic operations. This will lead
to more efficient DFT algorithms. The concept of symmetry-adapted represen-
tations has also been successfully applied to various mathematical and physical
problems (see, e.g., [12, 14]).

An easy induction argument shows that every representation of KG is equiv-
alent to a Sf-adapted representation. Moreover, S-adapted representations are
almost unique under certain conditions:

Theorem 2.1. For a S-adapted representation D of KG, the following state-
ments are equivalent:

(a) D is multiplicity-free and for all j, 1 < j < n, if F is an irreducible
constituent of D 1 KG1, then F 1 KGj_1 is multiplicity-free.

(b) If A is a Sf-adapted representation equivalent to D, then there exists a
monomial matrix X such that D(a) = X-1A(a)X for all a e KG . (In
this case, we call D and A monomially equivalent.)

A proof can be found in [4] or [1]. As we shall see later, the last theorem
applies to the tower

'T, : = (Sn > Sn -I > ... > SI)

of S, Next, we are going to describe Young's seminormal form, which is a
ST-adapted Fourier transform for S, Although it is well known (see, e.g.,
the standard text by James and Kerber [11]), we are going to revisit Young's
construction from an implementation point of view.

It is known that every field is a splitting field for S,. So let K be any
field with char K {n!. The conjugacy classes of S, as well as the equivalence
classes of irreducible representations of KS, are usually parametrized by the
partitions of n . A partition a = (aI, a2, . . .) of n, abbreviated a H n, is a
nonincreasing sequence of positive integers summing up to n. Partitions can
be illustrated by the corresponding diagrams: The diagram of a is the set

U{(i, ') I1 <i<ai},

which can be visualized as a left-justified arrangement of ai boxes in the ith
row. By abuse of notation we will make no difference between partitions and
their diagrams. The following figure shows all diagrams for n = 4:

FAST FOURIER TRANSFORMS FOR SYMMETRIC GROUPS 837

IDLE1 1 01 ffl oh

Hence, there are five unequivalent irreducible representations of KS4. For
every partition a of n, we denote by [a] an irreducible representation of Sn
of "type" ca. Inclusion defines a partial ordering on the set of all diagrams, the
so-called Young lattice:

In fact, this has a representation-theoretic meaning: The celebrated branching
theorem tells us that [a] t S- is multiplicity-free:

fi

[a t /n I\?

where the sum is over all diagrams fi of n - 1 contained in a. In particular,
the degree f, of [a] equals the number of paths from (1) to a in the Young
lattice. Every such path can be described by a standard a-tableau, which is an
a-shaped matrix whose elements 1, 2, ... , n are arranged in such a way that
the entries in each row and column are strictly increasing:

In 1930, Alfred Young gave surprisingly simple explicit formulae for Sn-adapted
irreducible representations of Sn . They are based on the so-called last letter se-
quence, which is a total ordering of the standard a-tableaux. It can be described
by the leaves of a certain tree. We omit a formal definition and illustrate it by
an example, the last letter sequence of all standard (3, 2)-tableaux:

838 MICHAEL CLAUSEN AND ULRICH BAUM

Since S, is generated by all transpositions of consecutive numbers,

every representation D of KSn is completely determined by all D(i, i + 1),
i < n. Let a be a partition of n . We are going to describe Young's seminormal
formaa~,which is an irreducible representation of KSn of "type a". The rows
and columns are parametrized by the last letter sequence T1 < ... < Tr of all
standard a-tableaux, where r :=fa . In order to describe for a fixed i < n

(2.1) aai i + 1) =:(Ukl) I<klr,

we have to consider two cases.

Case 1. For a < r the numbers i and i + 1 are in the same row (resp. column)
of Ta: Then the only nonzero entry in the ath row and ath column of (aki)
is the diagonal position: caa = 1 , if i and i + 1 are in the same row of Ta ,
whereas caa = -1I, if i and i + 1 are in the same column of Ta .

Case 2. Tb results from Ta by interchanging i and i + 1 : Then, if a < b,

(aa Cab /-1 1
V1ba 1 bb< I -d15

where d := ju - xI + Iv - yI is the axial distance of the positions (u, v) of
i and (x , y) of i + 1 in Ta . All other entries are zero. Consequently, the
matrix (akl) is sparse with at most two nonzero entries in each row and in each
column. Table 1 shows all a(i, i + 1) for n = 4.

FAST FOURIER TRANSFORMS FOR SYMMETRIC GROUPS 839

TABLE 1

last letter sequence aa(l, 2) aa(2, 3) a(3, 4)

1 1 2 1 3 1 4 1 (1) (1) (1)

LJwLjwFjw(-l11l) (A) (1

__ __ _ __ _ __
__X_ (1 1) (I -2 (1)

.~ ~~ 3

f~~~ 2 1 4 (- -1 8~ A l
_~~~~~~~~~~~~~~ 9

; A tH(-1) (-1) (-1

It can be shown that Can :=eahn a7 is a 3U-adapted Fourier transform for
KSn (see, e.g., Theorem 3.3.10 in [1 1]). More precisely,

(2.3) alS,-l = @ 9 ,
,f*n-l: fcar

where the direct summands appear in the order given by the first level of the
last letter sequence tree for a. For example,

oT(4'2, 1) 1 S6 - oy(3'2, 1) @ o7(4' 1, 1) ? (,2

As each aa l Sn.1 is multiplicity-free, Theorem 2.1 tells us that an is-up
to monomial basis transforms-the unique 4-adapted Fourier transform for
Snow For example, Young's orthogonal form, which is another well-known Sg-
adapted DFT for Sn, is obtained by a monomial basis transform from an . Our
DFT algorithm for Sn requires that, for all k < n the matrices 9 (i, i + 1)
for all fi H k and i < k be precomputed and stored. One might think that
this takes too much memory. But this is not the case if we use the right data
structure: The sparse matrix (Crab) 9=C(1, i + 1) is represented by a table
(ba, da)l~a~ffg of pairs of integers satisfying 1 < ba ? ffl, -1 ? da < k.
The pair (b, d) :=(ba, da) describes row a of the matrix. If a = b, then

Cra= d e {+ 1} according to Case 1 above. Otherwise, we are in Case 2. If
a< b, then aa =d-l and Cab = 1 -d-2. Finally, if a> b, we have
(Jab = 1 and Uaa = -d-l . This encoding is slightly redundant, but allows a
more efficient multiplication by ((Tab) . Altogether, we have to store

2 (k - 4)Zff
k<n flF-k

840 MICHAEL CLAUSEN AND ULRICH BAUM

small integers, a modest quantity compared to the input size n! = Ean f2.
For example, for n = 10, this requires space for 227, 376 small integers, while
the input consists of 10! = 3, 628, 800 floating-point numbers in case K = R.

Now we describe the procedure for computing all a(i, i + 1). In a first
step, we generate the Young lattice up to level n in an obvious way. This gives
us all partitions of k < n as well as the degrees and the branching behavior of
the corresponding representations in negligible time and space.

Next, we compute the 9fl(i, i + 1) "bottom-up" for S2, S3, ..., Sn . Sup-
pose l3 F- k < n and i < k. For i < k - 1, we have

cl(j, i +1) = (aI k (l)(i, i+ 1) = e &'(i, + 1)
y4-k-1: yCfl

according to equation (2.3). Hence, the matrix 9 (i, i + 1) can be assembled
without any further calculation from its direct summands already computed at
stage k - 1.

Only for i = k - 1, the matrix has to be constructed by Young's formula
using the last letter sequence of /8. To do this, we only need to know the
positions of k - 1 and k in the standard fl-tableaux T1, ..., To. Hence,
we do not have to construct the complete last letter sequence tree, but merely
the nodes N1 < ... < N, of depth 2. (These are pictures containing only
the two entries k - 1 and k.) This makes the construction of 9 (k - 1, k)
substantially faster.

Each Nj defines an interval Ij C { T, , . . . , Tf, }, which consists of all leaves
of the subtree rooted at Nj . The size of Ij equals the degree of the represen-
tation corresponding to the partition of k - 2 which is obtained by deleting
the positions k - 1 and k from Nj. (This degree has already been computed
in the first step of the algorithm.) For each 1 < j < m, exactly one of the
following two cases occurs:

(i) k - 1 and k are contained in the same row (resp. column) of Nj.
Then Case 1 of Young's construction applies to all elements Ta in Ij.

(ii) For some / > j, N1 is transformed into N1 by interchanging k - 1 and
k. Then Case 2 of Young's construction applies to every pair (Ta, Tb),
consisting of the uth element of Ij and II, respectively. Obviously,
the axial distance d is the same for all these pairs.

In this way, the matrix 0 (k - 1, k) can be quickly constructed. For n = 10,
the construction of 9 (i, i + 1) for all partitions /3 F- k and all 1 < i < k,
k = 2, ..., 10, takes 270 milliseconds on a SUN SPARCstation 1.

3. FAST EVALUATION

In this section, we will show how the Fourier transform an can be efficiently
evaluated. Given an element a = Zges, agg of KSn, we have to compute
an (a) . To begin with, we decompose S, into left cosets of the subgroup S,-I:
Sn = j:ngp9nSn- I, where gin is any fixed permutation in Sn which maps

FAST FOURIER TRANSFORMS FOR SYMMETRIC GROUPS 841

n to j. The choice of gin is crucial for our algorithm's efficiency and will
be discussed in a moment. According to this decomposition, we can write
a = Enj> gjnaj , where aj = ZheS,_ agjnhh E KSnj . As acn is a morphism of
K-algebras, we get

n n

an (a) = ian (gjn) an (aj) =E (E a (gin a' (aj)
j=1 j=1 ahxn

n

= E(a Ca(gin)(,a t 1KSn (aj).
j=1 aF-n

Now we use the fact that an is 9n-adapted:
n

n (a) =: E(,a (gin) e 9(a).

j= 1 aF-n aDfl-n- 1

Thus, every 9a(aj), once computed, can be used in the evaluation of aa(aj)
for all partitions a of n containing Jl . Because copying is free in our compu-
tational model, this means a substantial reduction in the number of operations.
The assumption that copying is free is realistic for practical software implemen-
tations, as copying an element of K is usually much faster than an arithmetic
operation. This is the fundamental advantage of S-adapted Fourier trans-
forms. (Clausen [5] employs this idea to derive improved DFT algorithms for
arbitrary finite groups.)

We still have to specify the coset representatives gin. We use the cycle
gjn (= U, i + 1, ... , n). Why is this a good choice? As gin = (, 1 + 1).
(j + 1, j + 2) ... (n - 1, n), Ca(gjn) is the product of n - j sparse matrices,

aa(jn) = a(j, j+ 1) . Ca(j+ 1, j+ 2) ...a(n - 1, n).

Recall that qa(i, i + 1) has at most two nonzero entries in each row and at
most I of its nonzero entries are 54 +1 . Hence we can multiply Ca(i, i + 1) 4

with an arbitrary fa-square matrix in at most *f,,j operations. Instead of
directly multiplying the "twiddle factor" qCa(gin) (which is typically not sparse)
by Ca (aj), we compute the product as indicated by the expression

(3.1) (qa(j, j + 1) ... (,(a(n -2, n- i). (a(n - 1, n) .a (aj))) ...)

and can thus perform this multiplication with at most 5 * (n - j)fa2 arithmetic 2
operations, compared to order fa for direct multiplication.2

Finally, we have to sum up the n blockdiagonal matrices an(gj)an(aj) . This
takes

(n - o)ofa2=n(n -)n!

operations.

2Diaconis and Rockmore also use an, but take gjn = (j, n) and directly multiply aa(gin) by
aa(aj) . This gives an upper bound of order (n!)3/2 * n for LK(Sn) .

842 MICHAEL CLAUSEN AND ULRICH BAUM

Let L, denote the arithmetic cost of our algorithm to evaluate an . Then we
have the recursion

/n n
n< n *Ln- + d2 *t+ (n -1) * JSnJ.

ij=1 m=j+ I ax-n

Obviously, LI = 0. When this is combined with EaFn 2 = -SI and the
well-known formula En72 (2) = (n+1) induction yields the following small
improvement of Clausen's original result (1.1).

Theorem 3.1. We have

LK(Sn) < Ln < (I n3 + In2 -1n)n!.

(By a closer look at the matrices in (3.1), this upper bound can be slightly
improved. However, the gain is too small to justify the much more technical
proof.)

So far, we have followed a top-down approach to describe and analyze our
algorithm. However, a top-down implementation recursively computing the
Fourier transform would require too much memory and a great deal of book-
keeping (see the discussion in [9]). Our implementation works bottom-up to
avoid these problems. It takes a global view of all computations at layer k
of the algorithm, where the Fourier transform ak of Sk is evaluated once for
each coset of Sk in Sn . More precisely, define gjk: (I, I + 1, ..., k) for
1 j < k < n . Then the words

9_ =jnngjnn-. gjk+lk+l, 1 ? ii < i,

form a transversal of left cosets of Sk in Sn . The lexicographical ordering of
the vectors (in, .. . A ik+1) thus induces a total ordering of the cosets.

The data in layer k of our algorithm consists of n!/k! blocks olk(aj) of size
k!, where the aj E KSk are defined by decomposing the input a E KSn along
our transversal: a = >j gja1 . As we shall see below, it is favorable for our
algorithm to arrange the blocks in each layer k according to the lexicographical
ordering of the cosets of Sk in Sn . Each blockdiagonal matrix ak (aj) is repre-
sented by a vector of length k! as follows: The block constituents are ordered
according to the lexicographic order of the partitions of k . Within each block,
the entries are stored row-wise. With respect to this arrangement, the data in
layer k can be described as a vector Vk E Kn! . In particular, the input vector
v1 consists of the coefficients of a enumerated in the lexicographical order of
the group elements.

Given v1 , our program successively computes v2, ... , Vn and outputs Vn .
In layer k, we compute Vk from Vk- . More precisely, we compute each
ak(aj) from the k blocks Jk-1(al) with g1Sk_1 C gjSk as described above.
As our ordering of the ak(aj) is compatible with the stepwise refinement of
our coset decomposition, the same linear transformation has to be applied to
each block of length k! in Vk - to obtain the corresponding block in Vk . In a
(sequential) software implementation, this is easy to realize by moving pointers

FAST FOURIER TRANSFORMS FOR SYMMETRIC GROUPS 843

over Vk and Vk- I . On the other hand, it is obvious that a very regular parallel
implementation is possible. The layered structure of the algorithm also allows
pipelining.

What about memory requirements? Of course, we do not have to store
(vj, ... , vn), but only Vk and Vk+1 at layer k. In addition, we need storage
for f2 + 2f, elements of K for evaluating the expression (3.1). Altogether,
our algorithm requires memory for

M(n) := 2 l n! + fn2 + 2 - fn

elements of K, where fn denotes the maximal degree of an irreducible repre-
sentation of KSn. For n = 10, we have fio = 768 and M(10) < 2.17. 10!.
In 32-bit floating-point arithmetic (K = R), this takes less than 30 megabytes
of virtual memory. In addition, we need less than one megabyte for storing the
precomputed tables (see ?2) and local variables. So the Fourier transform for
S10 is already feasible on a medium-sized workstation.

4. FAST INTERPOLATION

In this section we will design an efficient interpolation algorithm for symmet-
ric groups that evaluates the inverse Fourier transforms an-' . Our algorithm
is based on the well-known Fourier inversion formula [16, p. 49], which in our
case reads as follows:

ql (a) ISn I (Zfatr((g1)*A()) g

for every blockdiagonal matrix 3(a A E an (KSn). We rewrite this, using our
coset decomposition Sn = Uj gjnSn-i

a (yi (A) =~n Llg* l [iZ _o (Z tri a(g1l) . a(g,-). A)) g]

=:EginXin j

j<n

As can is 97-adapted, we have

tri (g)* gn) *At) = tr ((@ 4gl)*vlgI a)
ora~fn-i1

for all g E Snl. Let pat be the natural projection of Kfa xfa onto the block-
diagonal eaDfln- Kfflffl . Because only the diagonal elements contribute to
the trace of a matrix, we have

tr((e 3 l(g1)) .Q(gl) .Aa) = Etr(afl(g-) A~1)

844 MICHAEL CLAUSEN AND ULRICH BAUM

where : p,(a(gJl) *Aa) . Now we see that

Xjn = (Z-tr(a a(g)
a

0(gj1) *A,)) g

Xn
Jn- I IEn~ (tr ,SCE

gES,-l a f~

1 , (y 'ffl tr(afl(g-) (z * g

J~~n- I I nf~j aj

I n-lgES,-l ,a ,flB

Altogether,

To compute c'(rnl(Aa), we proceed as indicated by the previous equations:

I~~fgtr afl~g-1).
E fca -1

In a first step, we compute all the products qTa(gj-nl) *A, . Decomposing g1-n =

(n - 1, n)(n -2, n- l) *. (j, j+ 1) and proceeding as in (3.1), we obtain
all these products (and hence the blocks Al) in at most 2 (2n) *n! arithmetic
operations. Next, we compute all Alin the obvious way using at most

n~ n I I2E{x~ nCD#I ffl aj

flIn-1

< n.* (2max(I{av n~ l} l tr) - 1) - Af l

<n (2(1+ (n - 1))- 1)*(n- 1)!=(1+2 2(n- I))n!

operations. Finally, we compute a,7l (A's) for all j, recursively applying

Let An denote the arithmetic cost of our algorithm to evaluate an l. Then
we have the recursion

wh =0 ncnh ta

wiogther, .Inuto sosta

FAST FOURIER TRANSFORMS FOR SYMMETRIC GROUPS 845

Further estimation, using E n-- v'k- < fin vx dx < n312, yields the final result.

Theorem 4.1. There holds

LK(a,71) < (5 n3 + 4v/2n3/2 + 7n) * n!
(This upper bound can also be slightly improved at the expense of a much

more technical proof.)
Our interpolation program is very similar to our evaluation program "read

backwards" and uses exactly the same data structures. Hence, all comments on
the implementation made in ?3 apply respectively. In particular, our data ar-
rangement is also compatible with the successive coset decompositions implied
by equation (4.1).

5. RUNNING TIMES AND COMPARISONS

We have implemented our algorithm in C on a SUN SPARCstation 1. The C
program is less than 1000 lines long. It works over K = R, using 32-bit float
arithmetic. For 6 < n < 10, Table 2 shows the precomputation time (in CPU
seconds), size of precomputed tables (in kilobytes), evaluation time (in CPU
seconds), number of arithmetic operations, and the theoretical upper bound
of our FFT algorithm. (For total memory requirements, see the discussion
at the end of ?3.) Table 3 gives the same data for the fast Fourier inversion
algorithm. The precomputation times and memory requirements are the same
as before. We see that our theoretical analysis comes rather close to reality:
the running times of our algorithms are about proportional to the number of
arithmetic operations. This is made possible by our choice of data structures,
which results in low bookkeeping costs.

Let us now look at the performance of the other two algorithms mentioned.
Unfortunately, Diaconis and Rockmore [9, 15] do not present any running times
of their algorithm. To be able to compare actual running times, we have im-
plemented the "dynamic programming" variant (Algorithm 5 in [9]) of Diaconis

TABLE 2

n precomp. (s) table size (kb) eval. (s) arith. ops upper bound
6 0.01 2 0.08 55,440 73,800
7 0.02 7 0.79 623,952 811,440
8 0.03 28 8.67 7,507,836 9,596,160
9 0.08 110 105.68 96,756,840 121,927,680

10 0.26 444 1518.62 1,333,294,380 1,660,176,000

TABLE 3

n eval. (s) arith. ops upper bound
6 0.11 60,696 87,273
7 0.99 663,600 916,887
8 10.20 7,823,868 10,510,079
9 118.03 99,337,932 130,604,753

10 1630.98 1,354,098,380 1,749,547,826

846 MICHAEL CLAUSEN AND ULRICH BAUM

TABLE 4

n precomp. (s) table size (kb) eval. (s) arith. ops
6 0.03 16 0.12 61,920
7 0.15 134 1.64 1,110,144
8 1.43 1236 28.52 23,489,536
9 15.75 12576 633.34 576,440,064

10 195.79 140152 18493.50 16,532,519,760

TABLE 5

n eval. (s)
6 10.27
7 35.81
8 643.94
9 44791.26

and Rockmore, because it takes less memory and runs faster than the other
variants. In fact, this is very similar to our algorithm, as we have already seen
in ?3. The major difference is that they use the transpositions gjn := (j, n) as
coset representatives and store all a (jI, n) . As these matrices are typically not
sparse, this takes an enormous amount of memory, e.g., about 140 megabytes
for n = 10. Moreover, direct multiplication with such a matrix takes 0(d3)
operations, where d is its dimension. Our implementation of their algorithm
uses the same data structures as with our algorithm, except that the a a(jI, n)
are stored as full matrices and the data arrangement in each layer is adapted to
the coset representatives (j, n) . On a SPARCstation 1, we obtained the results
shown in Table 4.

The running times of Linton, Michler, and Olsson's [13] algorithm on an IBM
RISC 6000/540, which is faster than our SPARCstation 1 (evaluation times in
CPU seconds), are given in Table 5. They do not present any information on
their algorithm's memory requirements.

BIBLIOGRAPHY

1. U. Baum, Existence and efficient construction of fast Fourier transforms on supersolvable
groups, Comput. Complex. 1/3 (1992), 235-256.

2. U. Baum and M. Clausen, Some lower and upper complexity bounds for generalized Fourier
transforms and their inverses, SIAM J. Comput. 2 (1991), 451-459.

3. L. I. Bluestein, A linear filtering approach to the computation of the discrete Fourier transform,
IEEE Trans. AU-18 (1970), 451-455.

4. M. Clausen, Beitrdge zum Entwurf schneller Spektraltransformationen, Habilitationsschrift,
Universitat Karlsruhe, 1988.

5. - , Fast generalized Fourier transforms, Theoret. Comput. Sci. 67 (1989), 55-63.

6. J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier
series, Math. Comp. 19 (1965), 297-301.

7. P. Diaconis, A generalization of spectral analysis with application to ranked data, Ann.
Statist. 17 (1989), 949-979.

FAST FOURIER TRANSFORMS FOR SYMMETRIC GROUPS 847

8. , Group representations in probability and statistics, IMS Lecture Notes-Monograph
Ser., vol. 11, Inst. Math. Statist., Hayward, CA, 1988.

9. P. Diaconis and D. Rockmore, Efficient computation of the Fourier transform onfinite groups,
J. Amer. Math. Soc. 3 (1990), 297-332.

10. N. F. J. Inglis, R. W. Richardson, and J. Saxl, An explicit model for the complex
representations of S, , Arch. Math. (Basel) 54 (1990), 258-259.

11. G. D. James and A. Kerber, The representation theory of the symmetric group, Addison-
Wesley, Reading, MA, 1981.

12. D. J. Klein, C. H. Carlisle, and F. A. Matsen, Symmetry adaptation to sequences offinite
groups, Adv. Quantum Chemistry, vol. 5, Academic Press, New York, 1970, pp. 219-260.

13. S. A. Linton, G. 0. Michler, and J. B. Olsson, Fast Fourier transforms on symmetric groups,
preprint, Universitat Essen, 1991.

14. K. Murota and K. Ikeda, Computational use of group theory in bifurcation analysis of
symmetric structures, SIAM J. Sci. Statist. Comput. 12 (1991), 273-297.

15. D. Rockmore, Computation of Fourier transforms on the symmetric group, Computers and
Mathematics (E. Kaltofen and S. M. Watt, eds.), Springer, Berlin and New York, 1989, pp.
156-165.

16. J. P. Serre, Linear representations offinite groups, Springer, Berlin and New York, 1977.
17. S. Winograd, On computing the discrete Fourier transform, Math. Comp. 32 (1978), 175-199.

INSTITUT FUR INFORMATIK, UNIVERSITXT BONN, R6MERSTRASSE 164, 5300 BONN, GERMANY

E-mail address, M. Clausen: clausen@leon.cs.uni-bonn.de
E-mail address, U. Baum: uli@leon.cs.uni-bonn.de

